English

Find d2ydx2 of the following : x = a(θ – sin θ), y = a(1 – cos θ) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)

Sum

Solution

x = a(θ – sin θ), y = a(1 – cos θ)

Differentiating x and y w.r.t. θ, we get

`"dx"/"dθ" = a"d"/"dθ"(θ - sin θ)`

= a(1 – cos θ)                                       ...(1)

and

`"dy"/"dθ" = a"d"/"dθ"(1 - cos θ)`

= a[0 – (– sin θ)]

= a sin θ

∴ `"dy"/"dx" = (("dy"/"dθ"))/(("dx"/"dθ")`

= `"a sin θ"/"a(1 - cos θ)"`

= `(2sin(θ/2).cos(θ/2))/(2sin^2(θ/2)) = cot(θ/2)`

and

`(d^2y)/(dx^2) = "d"/"dx"[cot(θ/2)]`

= `"d"/"dx"[cot(θ/2)].("d"θ/2)/"dx"]`

= `-"cosec"^2(θ/2)."d"/"dθ"(θ/2) xx (1)/(("dx"/"dθ")`

= `-"cosec"^2(θ/2) xx (1)/(2) xx (1)/(a(1 - cosθ)`  ...[by (1)]

= `-(1)/(2a)"cosec"^2(θ/2) xx (1)/(2sin^2(θ/2)`

=`-(1)/(4a)."cosec"^4(θ/2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.5 [Page 60]

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


if `x^y + y^x = a^b`then Find `dy/dx`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Differentiate e4x + 5 w.r..t.e3x


Differentiate tan-1 (cot 2x) w.r.t.x.


Discuss extreme values of the function f(x) = x.logx


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


y = `e^(x3)`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×