English

Differentiate the following w.r.t. x : sin[2tan-1(1-x1+x)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`

Sum

Solution

Let y = `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`

Put x = cosθ. Thenθ = cos–1x and
`sqrt((1 - x)/(1 + x)) = sqrt((1 - cosθ)/(1 + cosθ)`

= `sqrt((2sin^2(θ/2))/(2cos^2(θ/2)`

= `sqrt(tan^2(θ/2)`

= `tan(θ/2)`

∴ `tan^-1(sqrt((1 - x)/(1 + x)))`

= `tan^-1[tan(θ/2)]`

= `θ/(2)`

= `(1)/(2)cos^-1 x`

∴ y = `sin[2 xx 1/2 cos^-1 x]`
= sin (cos–1x)
∴ `"dy"/"dx" = "d"/"dx"[sin(cos-1x)]`

= `cos(cos^-1x)."d"/"dx"(cos^-1x)`

= `x xx (-1)/sqrt(1 - x^2)`

= `(-x)/sqrt(1 - x^2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 4.1 | Page 64

RELATED QUESTIONS

Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


If f (x) = |x − 2| write whether f' (2) exists or not.


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


Differentiate tan-1 (cot 2x) w.r.t.x.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Differentiate xx w.r.t. xsix.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×