English

Find "Dy"/"Dx" ; If Y = Cos-1 ("2x" Sqrt (1 - "X"^2)) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`

Sum

Solution

y = cos-1 `("2x" sqrt (1 - "x"^2))`

Put x = sin θ

∴ θ = sin -1x

∴ Y = cos-1 `(2  "sin"  theta sqrt (1 - "x"^2))`

= cos -1 (2 sin θ . cos θ)

= cos-1 `["cos" (pi/2 - 2 theta)]`

`= pi/2 - 2  "sin"^(-1) "x"`

∴ y = - 2 sin-1 x

Differentiating w.r.t.x

`"dy"/"dx" = 0 - 2 "x" 1/sqrt (1 - "x"^2) = (-2)/sqrt (1 - "x"^2)`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (July) Set 1

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `x^y + y^x = a^b`then Find `dy/dx`


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


If f (x) = |x − 2| write whether f' (2) exists or not.


Differentiate tan-1 (cot 2x) w.r.t.x.


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


Find the nth derivative of the following : cos x


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


Find `"dy"/"dx"` if, yex + xey = 1 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×