Advertisements
Advertisements
Question
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Solution
Let u = `sin^-1((2x)/(1 + x^2))` and
v = `cos^-1((1 - x^2)/(1 + x^2))`
Then we want to find `"du"/"dv"`.
Put x = tanθ.
Then θ = tan–1x.
u = `sin^-1((2tanθ)/(1 + tanθ))`
= sin–1(sin2θ)
= 2θ
= 2tan–1x
∴ `"du"/"dx" = 2"d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`
Also, v = `cos^-1((1 - tan^2θ)/(1 + tan^2θ))`
= cos–1(cos 2θ)
= 2θ
= 2 tan–1x
∴ `"dv"/"dx" = 2"d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`
∴ `"du"/"dv" = (("du"/"dx"))/(("dv"/"dx")`
= `(((2)/(1 + x^2)))/(((2)/(1 + x^2))`
= 1.
Alternative Method :
Let u = `sin^-1((2x)/(1 + x^2)) and v = cos^-1((1 - x^2)/(1 + x^2))`
Then we want to find `"du"/"dv"`
Put x = tanθ.
Then u = `sin^-1((2tanθ)/(1 + tanθ))`
= sin–1 (sin2θ)
= 2θ
and
v = `cos^-1((1 - tan^2θ)/(1 + tan^2θ))`
= cos–1 (cos2θ)
= 2θ
∴ u = v
Differentiating both sides w.r.t. v, we get
`"du"/"dv"` = 1.
APPEARS IN
RELATED QUESTIONS
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Is |sin x| differentiable? What about cos |x|?
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos x
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx"` if, yex + xey = 1
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
y = `e^(x3)`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`