Advertisements
Advertisements
प्रश्न
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
उत्तर
Let u = `sin^-1((2x)/(1 + x^2))` and
v = `cos^-1((1 - x^2)/(1 + x^2))`
Then we want to find `"du"/"dv"`.
Put x = tanθ.
Then θ = tan–1x.
u = `sin^-1((2tanθ)/(1 + tanθ))`
= sin–1(sin2θ)
= 2θ
= 2tan–1x
∴ `"du"/"dx" = 2"d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`
Also, v = `cos^-1((1 - tan^2θ)/(1 + tan^2θ))`
= cos–1(cos 2θ)
= 2θ
= 2 tan–1x
∴ `"dv"/"dx" = 2"d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`
∴ `"du"/"dv" = (("du"/"dx"))/(("dv"/"dx")`
= `(((2)/(1 + x^2)))/(((2)/(1 + x^2))`
= 1.
Alternative Method :
Let u = `sin^-1((2x)/(1 + x^2)) and v = cos^-1((1 - x^2)/(1 + x^2))`
Then we want to find `"du"/"dv"`
Put x = tanθ.
Then u = `sin^-1((2tanθ)/(1 + tanθ))`
= sin–1 (sin2θ)
= 2θ
and
v = `cos^-1((1 - tan^2θ)/(1 + tan^2θ))`
= cos–1 (cos2θ)
= 2θ
∴ u = v
Differentiating both sides w.r.t. v, we get
`"du"/"dv"` = 1.
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Is |sin x| differentiable? What about cos |x|?
Write the derivative of f (x) = |x|3 at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
DIfferentiate x sin x w.r.t. tan x.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Find `"dy"/"dx"` if, xy = log (xy)
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`