Advertisements
Advertisements
प्रश्न
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
उत्तर
We have `(x^2 + y^2) = xy`
Differentiating with respect to x, we get
`=> d/dx [(x^2 + y^2)^2] = d/dx (xy)`
`=> 2(x^2 + y^2) d/(dx) (x^2 + y^2) = x (dy)/(dx) + y d/dx (x)`
`=> 2(x^2 + y^2) (2x+ 2y dy/dx) = x (dy/dx) + y (1)`
`=> 4x (x^2 + y^2) + 4y (x^2 + y^2) dy/dx = x dy/dx + y`
`=> 4y(x^2 + y^2) dy/dx - x dy/dx = y - 4x (x^2 + y^2)`
`=> dy/dx [4y(x^2 + y^2) - x] = y - 4x(x^2 + y^2)`
`=> dy/dx = (y - 4x(x^2+y^2))/(4y(x^2 + y^2) - x)`
`=> dy/dx = (4x(x^2 + y^2)-y)/(x-4y(x^2 + y^2))`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Differentiate tan-1 (cot 2x) w.r.t.x.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`