हिंदी

If x7⋅y9=(x + y)16, then show that dydx=yx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`

योग

उत्तर

`"x"^7*"y"^9 = ("x + y")^16`

Taking logarithm of both sides, we get

log `"x"^7*"y"^9` = log `("x + y")^16`

∴ log `"x"^7 + log "y"^9 = 16 log ("x + y")` 

∴ 7 log x + 9 log y = 16 log (x + y)

Differentiating both sides w.r.t. x, we get

`7(1/"x") + 9(1/"y") "dy"/"dx" = 16(1/("x + y")) "d"/"dx" ("x + y")`

∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") (1 + "dy"/"dx")`

∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") + 16/("x + y") "dy"/"dx"`

∴ `9/"y" "dy"/"dx" - 16/("x + y") "dy"/"dx" = 16/("x + y") - 7/"x"`

∴ `(9/"y" - 16/("x + y")) "dy"/"dx" = 16/("x + y") - 7/"x"`

∴ `[("9x" + "9y" - 16"y")/("y"("x + y"))] "dy"/"dx" = (16"x" - 7"x" - 7"y")/("x"("x + y"))`

∴ `[("9x" - 7"y")/("y"("x + y"))] "dy"/"dx" = ("9x" - 7"y")/("x"("x + y"))`

∴ `"dy"/"dx" = ("9x" - 7"y")/("x"("x + y")) xx ("y"("x + y"))/("9x" - 7"y")`

∴ `"dy"/"dx" = "y"/"x"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 13) | पृष्ठ १००

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find  `dy/dx` in the following:

2x + 3y = sin x


Write the derivative of f (x) = |x|3 at x = 0.


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `(d^2y)/(dy^2)`, if y = e4x


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×