Advertisements
Advertisements
प्रश्न
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
उत्तर
`"x"^"a"*"y"^"b" = ("x + y")^("a + b")`
Taking logarithm of both sides, we get
log (`"x"^"a"*"y"^"b"`) = log `("x + y")^("a + b")`
∴ log `"x"^"a" + log "y"^"b" = ("a + b") log ("x + y")`
∴ a log x + b log y = (a + b) log (x + y)
Differentiating both sides w.r.t. x, we get
`"a"(1/"x") + "b"(1/"y") "dy"/"dx" = ("a + b")(1/("x + y")) "d"/"dx" ("x + y")`
∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") (1 + "dy"/"dx")`
∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") + ("a + b")/("x + y") "dy"/"dx"`
∴ `"b"/"y" "dy"/"dx" - ("a + b")/("x + y") "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`
∴ `("b"/"y" - ("a + b")/("x + y")) "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`
∴ `[("bx" + "by" - "a""y" - "by")/("y"("x + y"))] "dy"/"dx" = ("ax" + "bx" - "ax" - "ay")/("x"("x + y"))`
∴ `[("bx" - "ay")/("y"("x + y"))] "dy"/"dx" = ("bx" - "ay")/("x"("x + y"))`
∴ `"dy"/"dx" = ("bx" - "ay")/("x"("x + y")) xx ("y"("x + y"))/("bx" - "ay")`
∴ `"dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
ax + by2 = cos y
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Write the derivative of f (x) = |x|3 at x = 0.
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : cos x
Find the nth derivative of the following : cos (3 – 2x)
Find the nth derivative of the following : `(1)/(3x - 5)`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`