Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
उत्तर
x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Differentiating x and y w.r.t. x, we get
`"dx"/"dm" = "d"/"dm"(sqrt(a^2 + m^2))`
= `(1)/(2sqrt(a^2 + m^2))."d"/"dm"(a^2 + m^2)`
= `(1)/(2sqrt(a^2 + m^2)) xx (0 + 2m) = m/sqrt(a^2 + m^2)`
and
`"dy"/"dm" = "d"/"dm"[log(a^2 + m^2)]`
= `(1)/(a^2 + m^2)."d"/"dm"(a^2 + m^2)`
= `(1)/(a^2 + m^2) xx (0 + 2m) = (2m)/(a^2 + m^2)`
∴ `"dy"/"dx" = (("dy"/"dm"))/(("dx"/"dm"))`
= `(((2m)/(a^2 + m^2)))/((m/sqrt(a^2 + m^2))`
= `(2)/sqrt(a^2 + m^2)`.
APPEARS IN
संबंधित प्रश्न
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Is |sin x| differentiable? What about cos |x|?
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate tan-1 (cot 2x) w.r.t.x.
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, yex + xey = 1
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`