हिंदी

Find dydx if x + sin(x + y) = y – cos(x – y) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)

योग

उत्तर

Given: x + sin(x + y) = y – cos(x – y)

To Find: Derivative of x + sin(x + y) = y – cos(x – y)

Step-by-step explanation:

Apply the sum/Difference Rule: (f ± g)' = f' ± g'

= `d/(dx) (x) + d/(dx) (sin(x + y)) - d/(dx) (y) + d/(dx) (cos(x - y))`

  1. `d/(dx) (x)` = 1
  2. `d/(dx) (sin(x + y)) = cos(x + y) + cos(x + y)((dy)/(dx))`
  3. `- d/(dx) (y) = - (dy)/(dx)`
  4. `d/(dx) (cos(x - y))`

Adding up all, we get;

⇒ 0 = `1 + cos(x + y)(1 + d/(dx) (y)) - d/(dx) (y) - sin(x - y)(1 - d/(dx) (y))`

Taking `(dy)/(dx)` on the left-hand side of the equation, we get:

`(dy)/(dx) = (1 + cos(x + y) - sin(x - y))/(- cos(x + y) + 1- sin(x - y))`

Hence, the derivative of the given equation is: `(1 + cos(x + y) - sin(x - y))/(1 - cos(x + y) - sin(x - y))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.3 | Q 3.10 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Write the derivative of f (x) = |x|3 at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Discuss extreme values of the function f(x) = x.logx


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following : y = eax . cos (bx + c)


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×