हिंदी

Solve the following: If exeyex + yex+ey=ex + y then show that, dydxey - xdydx=-ey - x. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.

योग

उत्तर

`"e"^"x" + "e"^"y" = "e"^("x + y")`    .....(i)

Differentiating both sides w.r.t.x, we get,

`"d"/"dx" "e"^"x" + "d"/"dx" "e"^"y" = "d"/"dx" "e"^("x + y")`

`"e"^"x" "d"/"dx" "x"  + "e"^"y" "d"/"dx" "y" = "e"^("x + y") "d"/"dx" ("x + y")   ...("d"/"dx" "e"^"x" = "e"^"x")`

`"e"^"x". (1) + "e"^"y" "dy"/"dx" = "e"^("x + y"). ["d"/"dx" "x" + "d"/"dx" "y"]  ...("d"/"dx" "x" = 1)`

∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") [1 + "dy"/"dx"]`

∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") + "e"^("x + y") "dy"/"dx"`

∴ `("e"^"y" − "e"^("x + y")) "dy"/"dx" = "e"^("x + y") − "e"^"x"`

∴ `["e"^"y" − ("e"^"x" + "e"^"y")] "dy"/"dx" = ("e"^"x" + "e"^"y") − "e"^"x"  ...["From (i)"]`

∴ `("e"^"y" - "e"^"x" - "e"^"y") "dy"/"dx" = ("e"^"x" + "e"^"y" - "e"^"x")`

∴ `(- "e"^"x") "dy"/"dx" = ("e"^"y")`

∴ `"dy"/"dx" = - ("e"^"y")/("e"^"x")`

∴ `"dy"/"dx" = - "e"^("y - x")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.4 [पृष्ठ ९५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.4 | Q 3. 3) | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find  `dy/dx` in the following:

2x + 3y = sin x


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×