Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if x = at2, y = 2at
उत्तर
x = at2
Differentiating both sides w.r.t. t, we get
`"dx"/"dt" = "d"/"dt" ("at"^2) = "a" "d"/"dt" ("t"^2) = 2 "at"`
y = 2at
Differentiating both sides w.r.t. t, we get
`"dy"/"dt" = "d"/"dt" (2"at") = "a" "d"/"dt" (2"t") = 2 "a"`
∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")) = "2a"/"2at" = 1/"t"`
∴ `"dy"/"dx" = 1/"t"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
Find the derivative of 7x w.r.t.x7
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.