Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
उत्तर
x = `("u" + 1/"u")^2` .....(i)
Differentiating both sides w.r.t. u, we get
`"dx"/"du" = 2("u" + 1/"u") * "d"/"dx" ("u" + 1/"u")`
`= 2("u" + 1/"u") [1 + (- 1) "u"^(-2)]`
∴ `"dx"/"du" = 2("u" + 1/"u")(1 - 1/"u"^2)`
`"y" = (2)^(("u" + 1/"u"))` .....(ii)
Differentiating both sides w.r.t. u, we get
`"dy"/"du" = 2^(("u" + 1/"u")) log 2 "d"/"dx" ("u" + 1/"u")`
∴ `"dy"/"du" = log 2 * 2^(("u" + 1/"u")) (1 - 1/"u"^2)`
∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du")) = (2^(("u" + 1/"u")) log 2 (1 - 1/"u"^2))/(2("u" + 1/"u")(1 - 1/"u"^2))`
`= (2^(("u" + 1/"u")) log 2)/(2("u" + 1/"u"))`
∴ `"dy"/"dx" = ("y" log 2)/(2sqrt"x")` ....[From (i) and (ii)]
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
State whether the following statement is True or False:
If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find the derivative of 7x w.r.t.x7
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`