Advertisements
Advertisements
प्रश्न
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
उत्तर
x = `(4"t")/(1 + "t"^2)`
Differentiating both sides w.r.t. ‘t’, we get
`("d"x)/"dt" = "d"/"dt" ((4"t")/(1 + "t"^2))`
= `((1 + "t"^2)*"d"/"dt"(4"t") - 4"t"*"d"/"dt"(1 + "t"^2))/(1 + "t"^2)^2`
= `((1 + "t"^2)(4) - 4"t"(0 + 2"t"))/(1 + "t"^2)^2`
= `(4 + 4"t"^2 - 8"t"^2)/(1 + "t"^2)^2`
= `(4 - 4"t"^2)/(1 + "t"^2)^2`
= `(4(1 - "t"^2))/(1 + "t"^2)^2`
y = `3((1 - "t"^2)/(1 + "t"^2))`
`("d"y)/"dt" = 3*"d"/"dt"((1 - "t"^2)/(1 + "t"^2))`
= `3[((1 + "t"^2)*"d"/"dt"(1 - "t"^2) - (1 - "t"^2)*"d"/"dt"(1 + "t"^2))/(1 + "t"^2)]`
= `3[((1 + "t"^2)(0 - 2"t") - (1 - "t"^2)(0 + 2"t"))/(1 + "t"^2)^2]`
= `3[(-2"t"(1 + "t"^2) - 2"t"(1 - "t"^2))/(1 + "t"^2)^2]`
= `3(- 2"t")[(1 + "t"^2 + 1 - "t"^2)/(1 + "t"^2)^2]`
= `- 6"t" xx 2/(1 + "t"^2)^2`
= `(-12"t")/(1 + "t"^2)^2`
∴ `("d"y)/("d"x) = (("d"y)/("dt"))/(("d"x)/("dt"))`
= `((-12"t")/((1 + "t"^2)^2))/((4(1 - "t"^2))/((1 + "t"^2)^2)`
= `("d"y)/("d"x) = (-3"t")/(1 - "t"^2)` ......(i)
Also, `(-9x)/(4y) = (-9((4"t")/(1 + "t"^2)))/(4 xx 3((1 - "t"^2)/(1 + "t"^2))`
= `(-3"t")/(1 -"t"^2)` ......(ii)
From (i) and (ii), we get
`("d"y)/("d"x) = (-9x)/(4y)`
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find the derivative of 7x w.r.t.x7
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.