Advertisements
Advertisements
प्रश्न
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
उत्तर
xa .yb = `(x + y)^((a + b))`
Taking logarithm of both sides, we get
log(xa.yb) = log(x + y)a+b
∴ log xa + log yb = (a + b) log (x + y)
∴ a log x + b log y = (a + b) log (x + y)
Differentiating both sides w.r.t. x, we get
`"a"*1/x + "b"*1/y*("d"y)/("d"x) = ("a" + "b")*1/(x + y)*"d"/("d"x)(x + y)`
∴ `"a"/x + "b"/y*("d"y)/("d"x) = ("a" + "b")/(x + y)(1 + ("d"y)/("d"x))`
∴ `"a"/x + "b"/y*("d"y)/("d"x) = ("a" + "b")/(x + y) + ("a" + "b")/(x + y) . ("d"y)/("d"x)`
∴ `"b"/y*("d"y)/("d"x) - ("a" + "b")/(x + y)*("d"y)/("d"x) = ("a" + "b")/(x + y) - "a"/x`
∴ `("b"/y - ("a" + "b")/(x + y)) ("d"y)/("d"x) = ("a" + "b")/(x + y) - "a"/x`
∴ `[("b"x + "b"y - "a"y - "b"y)/(y(x + y))]("d"y)/("d"x) = ("a"x + "b"x - "a"x - "a"y)/(x(x + y))`
∴ `[("b"x - "a"y)/(y(x + y))]("d"y)/("d"x) = ("b"x - "a"y)/(x(x + y))`
∴ `("d"y)/("d"x) = ("b"x - "a"y)/(x(x + y)) xx (y(x + y))/("b"x - "a"y)`
∴ `("d"y)/("d"x) = y/x`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
The derivative of ax is ax log a.
Differentiate log (1 + x2) with respect to ax.
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.