हिंदी

If x = t.logt, y = tt, then show that dydx = tt - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 

योग

उत्तर

x = t.logt    ......(i)

y = tt     ......(ii)

Taking logarithm of both sides, we get

log y = log tt

∴ log y = t.logt

∴ log y = x      ......[From (i)]

Differentiating both sides w.r.t. x, we get

`1/y*("d"y)/("d"x)` = 1

∴ `("d"y)/("d"x)` = y

∴ `("d"y)/("d"x)` = tt     ......[From (ii)]

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Differentiation - Q.4

संबंधित प्रश्न

Find `"dy"/"dx"`if, y = (2x + 5)x 


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


If y = elogx then `dy/dx` = ?


The derivative of ax is ax log a.


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx if, y =  x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×