Advertisements
Advertisements
प्रश्न
If xy = 2x – y, then `("d"y)/("d"x)` = ______
विकल्प
`(xlog2 - y)/(xlog2x)`
`(xlog2 + y)/(xlog2x)`
`(xlog2 + x)/(ylog2x)`
`(ylog2 - x)/(xlog2x)`
उत्तर
If xy = 2x – y, then `("d"y)/("d"x)` =`bbunderline((xlog2 + y)/(xlog2x))`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`