Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
विकल्प
2m
– 2m
– am
am
उत्तर
2m
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`