Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
उत्तर
y = (2x + 5)x
Taking logarithm of both sides, we get
log y = log (2x + 5)x
∴ log y = x * log (2x + 5)
Differentiating both sides w.r.t.x, we get
`1/"y" "dy"/"dx" = "x" * "d"/"dx"[log (2"x" + 5)] + log ("2x" + 5) * "d"/"dx" ("x")`
`= "x" * 1/("2x" + 5) * "d"/"dx" ("2x" + 5) + log (2"x" + 5) * (1)`
`= "x"/("2x" + 5) * (2 + 0) + log (2"x" + 5)`
∴ `1/"y" "dy"/"dx" = "2x"/("2x" + 5) + log ("2x" + 5)`
∴ `"dy"/"dx" = "y"["2x"/("2x" + 5) + log ("2x" + 5)]`
∴ `"dy"/"dx" = ("2x" + 5)^"x" [log ("2x" + 5) + "2x"/("2x" + 5)]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.