हिंदी

Find dydxif, y = (2x + 5)x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`if, y = (2x + 5)x 

योग

उत्तर

y = (2x + 5)x 

Taking logarithm of both sides, we get

log y = log (2x + 5)x 

∴ log y = x * log (2x + 5)

Differentiating both sides w.r.t.x, we get

`1/"y" "dy"/"dx" = "x" * "d"/"dx"[log (2"x" + 5)] + log ("2x" + 5) * "d"/"dx" ("x")`

`= "x" * 1/("2x" + 5) * "d"/"dx" ("2x" + 5) + log (2"x" + 5) * (1)`

`= "x"/("2x" + 5) * (2 + 0) + log (2"x" + 5)`

∴ `1/"y" "dy"/"dx" = "2x"/("2x" + 5) + log ("2x" + 5)`

∴ `"dy"/"dx" = "y"["2x"/("2x" + 5) + log ("2x" + 5)]`

∴ `"dy"/"dx" = ("2x" + 5)^"x" [log ("2x" + 5) + "2x"/("2x" + 5)]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.3 [पृष्ठ ९४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.3 | Q 2. 2) | पृष्ठ ९४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×