Advertisements
Advertisements
प्रश्न
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
विकल्प
True
False
उत्तर
This statement is True.
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.