हिंदी

If y = elogx then dydx = ? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = elogx then `dy/dx` = ?

विकल्प

  • `(e^(logx))/x`

  • `1/x`

  • 0

  • `1/2`

MCQ

उत्तर

`(e^(log x))/x`

Explanation:

y = elogx

Differentiating both sides w.r.t.x, we get

`dy/dx = e^(logx).d/dx`(logx)

= `e^(logx).1/x`

= `(e^(logx))/x`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 3) | पृष्ठ ९९

संबंधित प्रश्न

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


The derivative of ax is ax log a.


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If u = ex and v = loge x, then `("du")/("dv")` is ______


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx "if", y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×