Advertisements
Advertisements
प्रश्न
If y = elogx then `dy/dx` = ?
पर्याय
`(e^(logx))/x`
`1/x`
0
`1/2`
उत्तर
`(e^(log x))/x`
Explanation:
y = elogx
Differentiating both sides w.r.t.x, we get
`dy/dx = e^(logx).d/dx`(logx)
= `e^(logx).1/x`
= `(e^(logx))/x`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`