Advertisements
Advertisements
प्रश्न
`int 1/(4x^2 - 1) dx` = ______.
उत्तर
`int 1/(4x^2 - 1) dx = bb(underline(1/4log |(2x - 1)/(2x + 1)|)`.
Explanation:
`int 1/(4x^2 - 1) dx = int 1/(4(x^2 - 1/4))dx`
= `1/4 int 1/(x^2 - (1/2)^2)dx`
= `1/4 log|(x - 1/2)/(x + 1/2)|`
= `1/4 log|(2x - 1)/(2x + 1)|`
∴ `int 1/(4x^2 - 1) dx = 1/4 log|(2x - 1)/(2x + 1)|`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.