Advertisements
Advertisements
प्रश्न
If y = x log x, then `(d^2y)/dx^2`= _____.
उत्तर
If y = x log x, then `(d^2y)/dx^2`= `bb(underline(1/x))`
Explanation:
y = x log x
Differentiating both sides,
`dy/dx = x * d/dx(logx) + logx * d/dx(x)`
= `x * 1/x + logx` = 1 + logx
Again differentiating w.r.t.x,
`d/dx(dy/dx) = d/dx(1) + d/dx(logx)`
`(d^2y)/(dx^2) = 0 + 1/x = 1/x`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
If y = elogx then `dy/dx` = ?
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`