Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
पर्याय
True
False
उत्तर
False
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.