Advertisements
Advertisements
Question
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Options
True
False
Solution
False
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Differentiate log (1 + x2) with respect to ax.
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
If y = x . log x then `dy/dx` = ______.
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/(dx) "if", y = x^(e^(x))`