English

Find dydxdydxif, y = xxxx10xx+10x10+1010x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`

Sum

Solution

y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx" (10^("x"^"x") + 10^("x"^10) + 10^(10^"x"))`

`= "d"/"dx" (10^("x"^"x")) + "d"/"dx" (10^("x"^10)) + "d"/"dx" (10^(10^"x"))`

∴ `"dy"/"dx" = 10^("x"^"x") * log 10 * "d"/"dx" ("x"^"x") + 10^("x"^10) * log 10 * "d"/"dx" ("x"^10) + 10^(10^"x") * log 10 * "d"/"dx" (10^"x")`

`= 10^("x"^"x") * log 10 * "x"^"x"(1 + log "x") + 10^("x"^10) * log 10 * 10 "x"^9 + 10^(10^"x") * log 10 * 10^"x" log 10`

∴ `"dy"/"dx" = 10^("x"^"x") * "x"^"x" * log 10(1 + log "x") + 10^("x"^10) * 10 "x"^9 * log 10 + 10^(10^"x") * 10^"x" (log 10)^2`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.3 [Page 94]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×