Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Solution
y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx" (10^("x"^"x") + 10^("x"^10) + 10^(10^"x"))`
`= "d"/"dx" (10^("x"^"x")) + "d"/"dx" (10^("x"^10)) + "d"/"dx" (10^(10^"x"))`
∴ `"dy"/"dx" = 10^("x"^"x") * log 10 * "d"/"dx" ("x"^"x") + 10^("x"^10) * log 10 * "d"/"dx" ("x"^10) + 10^(10^"x") * log 10 * "d"/"dx" (10^"x")`
`= 10^("x"^"x") * log 10 * "x"^"x"(1 + log "x") + 10^("x"^10) * log 10 * 10 "x"^9 + 10^(10^"x") * log 10 * 10^"x" log 10`
∴ `"dy"/"dx" = 10^("x"^"x") * "x"^"x" * log 10(1 + log "x") + 10^("x"^10) * 10 "x"^9 * log 10 + 10^(10^"x") * 10^"x" (log 10)^2`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If y = x . log x then `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, `y = x^(e^x)`