Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
उत्तर
y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx" (10^("x"^"x") + 10^("x"^10) + 10^(10^"x"))`
`= "d"/"dx" (10^("x"^"x")) + "d"/"dx" (10^("x"^10)) + "d"/"dx" (10^(10^"x"))`
∴ `"dy"/"dx" = 10^("x"^"x") * log 10 * "d"/"dx" ("x"^"x") + 10^("x"^10) * log 10 * "d"/"dx" ("x"^10) + 10^(10^"x") * log 10 * "d"/"dx" (10^"x")`
`= 10^("x"^"x") * log 10 * "x"^"x"(1 + log "x") + 10^("x"^10) * log 10 * 10 "x"^9 + 10^(10^"x") * log 10 * 10^"x" log 10`
∴ `"dy"/"dx" = 10^("x"^"x") * "x"^"x" * log 10(1 + log "x") + 10^("x"^10) * 10 "x"^9 * log 10 + 10^(10^"x") * 10^"x" (log 10)^2`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.