Advertisements
Advertisements
प्रश्न
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
उत्तर
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/"x"`
Explanation:
0 = log(xy) + a
∴ log(xy) = - a
∴ log x + log y = - a
Differentiating both sides w.r.t.x, we get
`1/"x" + 1/"y" "dy"/"dx" = 0`
∴ `1/"y" * "dy"/"dx" = - 1/"x"`
∴ `"dy"/"dx" = (-"y")/"x"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`