Advertisements
Advertisements
Question
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Solution
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/"x"`
Explanation:
0 = log(xy) + a
∴ log(xy) = - a
∴ log x + log y = - a
Differentiating both sides w.r.t.x, we get
`1/"x" + 1/"y" "dy"/"dx" = 0`
∴ `1/"y" * "dy"/"dx" = - 1/"x"`
∴ `"dy"/"dx" = (-"y")/"x"`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
If y = elogx then `dy/dx` = ?
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`