Advertisements
Advertisements
Question
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Solution
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = bbunderline"y"/"x"`
Explanation:
xm.yn = `("x + y")^("m + n")`
log(xm.yn) = log`("x + y")^("m + n")`
mlogx + nlogy = (m + n) log(x + y) ...`[(log(ab)=loga+logb),(logm^n=nlogm)]`
Diff. w.r.t.x.
`mxx1/x+nxx1/y.dy/dx=(m+n)1/(x+y)xx(1+dy/dx)`
`m/x+n/y.dy/dx=(m+n)/(x+y)+(m+n)/(x+y)dy/dx`
`n/ydy/dx-(m+n)/(x+y)dy/dx=(m+n)/(x+y)-m/x`
`dy/dx(n/y-(m+n)/(x+y))=(m+n)/(x+y)-m/x`
`dy/dx[(nx+ny-my-ny)/(y(x+y))]=(mx+mx-mx-my)/((x+y)x)`
`dy/dx=(nx-my)/x xxy/(nx-my)`
`dy/dx=y/x`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find the second order derivatives of the following : e4x. cos 5x
Find the second order derivatives of the following : xx
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
y = sin (ax+ b)
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`