Advertisements
Advertisements
Question
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
Solution
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = -1.
Explanation:
3x2y + 3xy2 = 0
Dividing both sides by 3xy, we get
x + y = 0
Differentiating both sides w.r.t.x, we get
`1 + "dy"/"dx" = 0`
∴ `"dy"/"dx" = - 1`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find `"dy"/"dx"`, if y = xx.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
The differential equation of (x - a)2 + y2 = a2 is ______
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.