Advertisements
Advertisements
Question
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Options
a + b
`(ax^2)/2 + bx`
`(ax^2)/2 + bx + c`
b
Solution
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to `underlinebb((ax^2)/2 + bx)`.
Explanation:
Given
`d/dx [f(x)]` = ax + b
By integrating both sides, we get
f(x) = `int (ax + b)dx`
`\implies` f(x) = `(ax^2)/2 + bx + c`
Now, f(0) = 0
∴ f(0) = 0 + 0 + c
`\implies` c = 0
Then, f(x) = `(ax^2)/2 + bx`.
RELATED QUESTIONS
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
`d/dx(10^x) = x*10^(x - 1)`
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`