English

Find dydx if, y = log(ax2 + bx + c) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 

Sum

Solution

y = log(ax2 + bx + c) 

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"` [log(ax2 + bx + c)]

`= 1/("ax"^2 + "bx" + "c") * "d"/"dx" ("ax"^2 + "bx" + "c")`

`= 1/("ax"^2 + "bx" + "c") * ["a"("2x") + "b" + 0]`

∴ `"dy"/"dx" = ("2ax" + "b")/("ax"^2 + "bx" + "c")`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.1 [Page 91]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×