Advertisements
Advertisements
Question
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
Solution
y = `2^("x"^"x")`
Taking logarithm of both sides, we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "d"/"dx" ("x"^"x")` ...(i)
Let u = xx
log u = log (xx)
∴ log y = x log x
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx" ("x")`
= `"x" * 1/"x" + log "x" (1)`
∴ `1/"u" * "du"/"dx" = 1 + log "x"`
∴ `"dy"/"dx" = "u"(1 + log "x")`
∴ `"d"/"dx"("x"^"x") = "x"^"x" (1 + log "x")` ...(ii)
Substituting (ii) in (i), we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "x"^"x" (1 + log "x")`
`"dy"/"dx" = 2^("x"^"x") * "x"^"x" * log 2 (1 + log "x")`
APPEARS IN
RELATED QUESTIONS
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = xx.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.