Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
उत्तर
y = `2^("x"^"x")`
Taking logarithm of both sides, we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "d"/"dx" ("x"^"x")` ...(i)
Let u = xx
log u = log (xx)
∴ log y = x log x
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx" ("x")`
= `"x" * 1/"x" + log "x" (1)`
∴ `1/"u" * "du"/"dx" = 1 + log "x"`
∴ `"dy"/"dx" = "u"(1 + log "x")`
∴ `"d"/"dx"("x"^"x") = "x"^"x" (1 + log "x")` ...(ii)
Substituting (ii) in (i), we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "x"^"x" (1 + log "x")`
`"dy"/"dx" = 2^("x"^"x") * "x"^"x" * log 2 (1 + log "x")`
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `dy/dx if x + sqrt(xy) + y = 1`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`