हिंदी

If a1-x2+1-y2=a(x-y), prove that dydxdydx=1-y21-x2 - Mathematics

Advertisements
Advertisements

प्रश्न

If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 

योग

उत्तर

Given that: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`

Put x = sin θ and y = sin Φ.

∴ θ = sin–1x and Φ = sin–1y

`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)

⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)

⇒ cos θ + cos Φ = a(sin θ – sin Φ)

⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a

⇒ `(2 cos  (theta + phi)/2 * cos  (theta - phi)/2)/(2cos  (theta + phi)/2 * sin  (theta - phi)/2)` = a        ......`[(because cos "A" + cos "B" = 2cos  ("A" + "B")/2 * cos  ("A" - "B")/2),(sin"A" - sin"B" = 2cos  ("A" + "B")/2 * sin  ("A" - "B")/2)]`

⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a

⇒ `cot((theta - phi)/2)` = a

⇒ `(theta - phi)/2 = cot^-1"a"`

⇒ θ – Φ = 2cot–1a

⇒ sin–1x – sin–1y = 2 cot–1a

Differentiating both sides w.r.t. x

`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`

⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0

⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`

∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 63 | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


Derivative of ex sin x w.r.t. e-x cos x is ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = `cos sqrt(x)`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×