Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
उत्तर
y = `root(3)("a"^2 + "x"^2)`
∴ y = `("a"^2 + "x"^2)^(1/3)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[("a"^2 + "x"^2)^(1/3)]`
`= 1/3 ("a"^2 + "x"^2)^(-2/3) * "d"/"dx" ("a"^2 + "x"^2)`
`= 1/3 ("a"^2 + "x"^2)^(-2/3) * (0 + 2"x")`
∴ `"dy"/"dx" = "2x"/3 ("a"^2 + "x"^2)^(-2/3)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Find `"dy"/"dx"`, if y = xx.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = x10, then `("d"y)/("d"x)` is ______
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.