हिंदी

Find dydxdydx if, y = axa2+x23 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`

योग

उत्तर

y = `root(3)("a"^2 + "x"^2)`

∴ y = `("a"^2 + "x"^2)^(1/3)`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[("a"^2 + "x"^2)^(1/3)]`

`= 1/3 ("a"^2 + "x"^2)^(-2/3) * "d"/"dx" ("a"^2 + "x"^2)`

`= 1/3 ("a"^2 + "x"^2)^(-2/3) * (0 + 2"x")`

∴ `"dy"/"dx" = "2x"/3 ("a"^2 + "x"^2)^(-2/3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.1 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.1 | Q 1. 2) | पृष्ठ ९०

संबंधित प्रश्न

Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


State whether the following is True or False:

The derivative of polynomial is polynomial.


Find `"dy"/"dx"`, if y = xx.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x10, then `("d"y)/("d"x)` is ______


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×