हिंदी

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x

योग

उत्तर

Let δx be a small increment in the value of x.

Since u is a function of x, there should be a corresponding increment δu in the value of u.

Also y is a function of u.

∴ There should be a corresponding increment δy in the value of y.

Consider, `(deltay)/(deltax) = (deltay)/(deltau) xx (deltau)/(deltax)`

Taking `lim_(deltax -> 0)` on both sides, we get

`lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltax -> 0) (deltay)/(deltau) xx lim_(deltax -> 0) (deltau)/(deltax)`

As δx → 0, δu → 0  ........[u is a continuous function of x]

∴ `lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltau -> 0) (deltay)/(deltau) xx lim_(deltax ->0) (deltau)/(deltax)`  ........(i)

y is a differentiable function of u and u is a differentiable function of x.

∴ `lim_(deltau -> 0) (deltay)/(deltau) = ("d"y)/("d"u)` exists and is finite.

Also, `lim_(deltax -> 0) (deltau)/(deltax) = ("d"u)/("d"x)` exists and is finite.

From (i), we get

`lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"u) xx ("d"u)/("d"x)`  ........(ii)

Here, R.H.S. of (ii) exists and is finite.

Hence, L.H.S. of (ii) should also exists and be finite.

∴ `lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"x)` exists and is finite.

∴ Equation (ii) becomes

`("d"y)/("d"x) = ("d"y)/("d"u) xx ("d"u)/("d"x)`

y = sin2x

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(sin^2x)`

= `2sinx*"d"/("d"x)(sinx)`

= 2 sin x cos x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - :: Theorems ::

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


The derivative of f(x) = ax, where a is constant is x.ax-1.


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = log (cos ex), then `"dy"/"dx"` is:


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


y = `cos sqrt(x)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×