हिंदी

Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and dydx ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then dxdy=1dydx,dydx ≠ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0

योग

उत्तर

‘y’ is a differentiable function of ‘x’.

Let there be a small increment δx in the value of ‘x’.

Correspondingly, there should be a small increment δy in the value of ‘y’.

As δx → 0, δy → 0

Consider, `(deltax)/(deltay) xx (deltay)/(deltax)` = 1

∴ `(deltax)/(deltay) = 1/((deltay)/(deltax)), (deltay)/(deltax)` ≠ 0

Taking `lim_(deltax -> 0)` on both sides, we get

`lim_(deltax -> 0)((deltax)/(deltay)) = 1/(lim_(deltax -> 0)((deltay)/(deltax))`

Since ‘y’ is a differentiable function of ‘x’,

`lim_(deltax -> 0) ((deltay)/(deltax)) = ("d"y)/("d"x)` and `("d"y)/("d"x)` ≠ 0

∴ `lim_(deltax -> 0)((deltax)/(deltay)) = 1/(("d"y)/("d"x))`

As δx → 0, δy → 0

`lim_(deltax -> 0) ((deltay)/(deltax)) = 1/(("d"y)/("d"x))`  .......(i)

Here, R.H.S. of (i) exist and are finite.

Hence, limits on L.H.S. of (i) also should exist and be finite.

∴ `lim_(deltax -> 0)((deltax)/(deltay)) = ("d"y)/("d"x)`  exists and is finite.

∴ `("d"x)/("d"y) = 1/((("d"y)/("d"x))), ("d"y)/("d"x)` ≠ 0

Alternate Proof:

We know that f–1[f(x)] = x   .......[Identity function]

Taking derivative on both the sides, we get

`"d"/("d"x) ["f"^-1["f"(x)]] = "d"/("d"x)(x)`

∴ `("f"^-1)"'"["f"(x)]"d"/("d"x)["f"(x)]` = 1

∴ (f–1)′[f(x)] f′(x) = 1

∴ (f–1)′[f(x)] = `1/("f""'"(x))`   .......(i)

So, if y = f(x) is a differentiable function of x and x = f–1(y) exists and is differentiable then

(f–1)′[f(x)] = (f–1)′(y) = `("d"x)/("d"y)` and f'(x) = `("d"y)/("d"x)`

∴ Equation (i) becomes

`("d"x)/("d"y) = 1/(("d"y)/("d"x))` where `("d"y)/("d"x)` ≠ 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - :: Theorems ::

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = xx.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If y = log (cos ex), then `"dy"/"dx"` is:


y = cos (sin x)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×