हिंदी

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and dxdt ≠ 0 then dydx=dydtdxd. Hence find dydx if x = sin t and y = cost - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost

योग

उत्तर

x and y are differentiable functions of t.

Let there be a small increment δt in the value of t.

Correspondingly, there should be small increments δx, δy in the values of x and y, respectively.

As δt → 0, δx → 0, δy → 0

Consider, `(deltay)/(deltax) = ((deltay)/(deltat))/((deltax)/(deltat)), (deltax)/(deltat)` ≠ 0
Taking `lim_(deltat -> 0)` on both sides, we get

`lim_(deltat -> 0) (deltay)/(deltax) = (lim_(deltat -> 0)(deltay)/(deltat))/(lim_(deltat -> 0) (deltax)/(deltat))`

Since x and y are differentiable functions of t, `lim_(deltat -> 0) (deltay)/(deltat) = (dy)/(dt)` exists and is finite.

Also, `lim_(deltat -> 0) (deltax)/(deltat) = (dx)/(dt)` exists and is finite.

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (((dy)/(dt))/((dx)/(dt)))`

As δt → 0, δx → 0

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (((dy)/(dt))/((dx)/(dt)))`   .......(i)

Here, R.H.S. of (i) exist and are finite.

Hence, limits on L.H.S. of (i) also should exist and be finite.

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (dy)/(dx)` exists and is finite.

∴ `(dy)/(dx) = (((dy)/(dt))/((dx)/(dt))), (dx)/(dt)` ≠ 0

Now, x = sin t and y = cos t

∴ `(dx)/(dt)` = cos t and `(dy)/(dt)` = –sin t

∴ `(dy)/(dx) = ((dy)/(dt))/((dx)/(dt)) = (-sin t)/cos t` = – tan t

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - :: Theorems ::

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


The derivative of f(x) = ax, where a is constant is x.ax-1.


State whether the following is True or False:

The derivative of polynomial is polynomial.


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = xx.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x10, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x|, find f'`((3pi)/4)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `cos sqrt(x)`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×