English

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and dxdt ≠ 0 then dydx=dydtdxd. Hence find dydx if x = sin t and y = cost - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost

Sum

Solution

x and y are differentiable functions of t.

Let there be a small increment δt in the value of t.

Correspondingly, there should be small increments δx, δy in the values of x and y, respectively.

As δt → 0, δx → 0, δy → 0

Consider, `(deltay)/(deltax) = ((deltay)/(deltat))/((deltax)/(deltat)), (deltax)/(deltat)` ≠ 0
Taking `lim_(deltat -> 0)` on both sides, we get

`lim_(deltat -> 0) (deltay)/(deltax) = (lim_(deltat -> 0)(deltay)/(deltat))/(lim_(deltat -> 0) (deltax)/(deltat))`

Since x and y are differentiable functions of t, `lim_(deltat -> 0) (deltay)/(deltat) = (dy)/(dt)` exists and is finite.

Also, `lim_(deltat -> 0) (deltax)/(deltat) = (dx)/(dt)` exists and is finite.

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (((dy)/(dt))/((dx)/(dt)))`

As δt → 0, δx → 0

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (((dy)/(dt))/((dx)/(dt)))`   .......(i)

Here, R.H.S. of (i) exist and are finite.

Hence, limits on L.H.S. of (i) also should exist and be finite.

∴ `lim_(deltat -> 0) (deltay)/(deltax) = (dy)/(dx)` exists and is finite.

∴ `(dy)/(dx) = (((dy)/(dt))/((dx)/(dt))), (dx)/(dt)` ≠ 0

Now, x = sin t and y = cos t

∴ `(dx)/(dt)` = cos t and `(dy)/(dt)` = –sin t

∴ `(dy)/(dx) = ((dy)/(dt))/((dx)/(dt)) = (-sin t)/cos t` = – tan t

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - :: Theorems ::

RELATED QUESTIONS

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : e4x. cos 5x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If y = log (cos ex), then `"dy"/"dx"` is:


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = cos (sin x)


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `cos sqrt(x)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×