English

If y = eax. cos bx, then prove that d2ydx2-2adydx+(a2+b2)y = 0 - Mathematics

Advertisements
Advertisements

Question

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0

Sum

Solution

y = eax. cos bx

`dy/dx = ae^(ax).cosbx - be^(ax).sinbx  ...(i)`

`dy/dx = ay - be^(ax).sinbx`

`(d^2y)/(dx^2) = ady/dx - b(ae^(ax).sinbx + be^(ax).cosbx)`

`(d^2y)/(dx^2) = ady/dx - abe^(ax).sinbx - b^2e^(ax).cosbx`

`(d^2y)/(dx^2) = ady/dx - a(ay - dy/dx) - b^2y `   ...[Substituting beax sin bx from (i)]

`(d^2y)/(dx^2) = ady/dx - a^2y + ady/dx - b^2y`

`therefore (d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0

Hence Proved

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

If y = log (cos ex) then find `"dy"/"dx".`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x|, find f'`((3pi)/4)`


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = cos (sin x)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×