English

Find dydxdydx if, y = xxx+1x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`

Sum

Solution

y = `sqrt("x" + 1/"x")`

Let u = `"x" + 1/"x"`

∴ y = `sqrt"u"`

Differentiating both sides w.r.t. u, we get

`"dy"/"dx" = "d"/"du" (sqrt"u") = 1/(2sqrt"u")`

u = `"x" + 1/"x"`

Differentiating both sides w.r.t. x, we get

`"du"/"dx" = "d"/"dx"("x" + 1/"x") = 1 - 1/"x"^2`

By chain rule, we get

`"dy"/"dx" = "dy"/"du" xx "du"/"dx" = 1/(2sqrt"u") xx (1 - 1/"x"^2)`

`= 1/(2sqrt("x" + 1/"x")) (1 - 1/"x"^2)`

∴ `"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2)(1 - 1/"x"^2)`

Alternate Method:

y = `sqrt("x" + 1/"x")`

∴ y = `("x" + 1/"x")^(1/2)`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[("x" + 1/"x")^(1/2)]`

`= 1/2 ("x" + 1/"x")^(-1/2) * "d"/"dx" (1 + 1/"x")`

`"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2) (1 - 1/"x"^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.1 [Page 91]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×