Advertisements
Advertisements
Question
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Solution
y = `sqrt("x" + 1/"x")`
Let u = `"x" + 1/"x"`
∴ y = `sqrt"u"`
Differentiating both sides w.r.t. u, we get
`"dy"/"dx" = "d"/"du" (sqrt"u") = 1/(2sqrt"u")`
u = `"x" + 1/"x"`
Differentiating both sides w.r.t. x, we get
`"du"/"dx" = "d"/"dx"("x" + 1/"x") = 1 - 1/"x"^2`
By chain rule, we get
`"dy"/"dx" = "dy"/"du" xx "du"/"dx" = 1/(2sqrt"u") xx (1 - 1/"x"^2)`
`= 1/(2sqrt("x" + 1/"x")) (1 - 1/"x"^2)`
∴ `"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2)(1 - 1/"x"^2)`
Alternate Method:
y = `sqrt("x" + 1/"x")`
∴ y = `("x" + 1/"x")^(1/2)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[("x" + 1/"x")^(1/2)]`
`= 1/2 ("x" + 1/"x")^(-1/2) * "d"/"dx" (1 + 1/"x")`
`"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2) (1 - 1/"x"^2)`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.