Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
उत्तर
y = `sqrt("x" + 1/"x")`
Let u = `"x" + 1/"x"`
∴ y = `sqrt"u"`
Differentiating both sides w.r.t. u, we get
`"dy"/"dx" = "d"/"du" (sqrt"u") = 1/(2sqrt"u")`
u = `"x" + 1/"x"`
Differentiating both sides w.r.t. x, we get
`"du"/"dx" = "d"/"dx"("x" + 1/"x") = 1 - 1/"x"^2`
By chain rule, we get
`"dy"/"dx" = "dy"/"du" xx "du"/"dx" = 1/(2sqrt"u") xx (1 - 1/"x"^2)`
`= 1/(2sqrt("x" + 1/"x")) (1 - 1/"x"^2)`
∴ `"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2)(1 - 1/"x"^2)`
Alternate Method:
y = `sqrt("x" + 1/"x")`
∴ y = `("x" + 1/"x")^(1/2)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[("x" + 1/"x")^(1/2)]`
`= 1/2 ("x" + 1/"x")^(-1/2) * "d"/"dx" (1 + 1/"x")`
`"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2) (1 - 1/"x"^2)`
APPEARS IN
संबंधित प्रश्न
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`