Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
उत्तर
y = (6x3 – 3x2 – 9x)10
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[(6x^3 - 3x^2 - 9x)^10]`
= `10(6x^3 - 3x^2 - 9x)^9 xx "d"/("d"x) (6x^3 - 3x^2 - 9x)`
= 10(6x3 − 3x2 − 9x)9 × [6(3x2) – 3(2x) − 9]
∴ `("d"y)/("d"x)` = = 10(6x3 − 3x2 − 9x)9 . (18x2 − 6x − 9)
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`