Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
उत्तर
y = `root(5)((3x^2 + 8x + 5)^4`
y = `(3x^2 + 8x + 5)^(4/5)`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) [(3x^2 + 8x + 5)^(4/5)]`
= `4/5(3x^2 + 8x + 5)^(-1/5)*"d"/("d"x)(3x^2 + 8x + 5)`
= `4/5(3x^2 + 8x + 5)^(-1/5)*[3(2x) + 8 + 0]`
∴ `("d"y)/("d"x) = 4/5(3x^2 + 8x + 5)^(1/5)*(6x + 8)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.