Advertisements
Advertisements
प्रश्न
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
उत्तर
We have y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}`
Where 0 < x < 1
Put x = sinA and `sqrt(x)` = sinB
Therefore, y = `sin^-1{sin"A" sqrt(1 - sin^2"B") - sin"B"sqrt(1 - sin^2"A")}`
= `sin^-1 {sin "A" cos "B" - sin "B" cos "A"}`
= `sin^-1 {sin("A" - "B")}`
= A – B
Thus y = `sin^-1x - sin^1 sqrt(x)`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = 1/sqrt(1 - x^2) - 1/sqrt(1 - sqrt((x)^2)) * "d"/("d"x) (sqrt(x))`
= `1/sqrt(1 - x^2) - 1/(2sqrt(x) sqrt(1 - x))`.
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
`d/dx(10^x) = x*10^(x - 1)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = log (cos ex), then `"dy"/"dx"` is:
y = cos (sin x)
y = `2sqrt(cotx^2)`
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`