Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
рдЙрддреНрддрд░ рез
`y = [x + sqrt(a^2 + x^2)]^m`
`dy/dx = (m[x + sqrt(a^2 + x^2)]^m)/(x + sqrt(a^2 + x^2))*[1 + (1*2x)/(2sqrt(a^2 + x^2))]`
= `my 1/sqrt(a^2 + x^2)`
`sqrt(a^2 + x^2)dy/dx = my`
`sqrt(a^2 + x^2)(d^2y)/(dx^2) + dy/dx * 1/2 * (2x)/sqrt(a^2 + x^2) = mdy/dx`
`(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - msqrt(a^2 + x^2)dy/dx = 0`
`(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
рдЙрддреНрддрд░ реи
`y = [x + sqrt(a^2 + x^2)]^m`
`dy/dx = (m[x + sqrt(a^2 + x^2)]^m)/(x + sqrt(a^2 + x^2)]*[1 + (1.2x)/(2sqrt(a^2 + x^2))]`
= `my 1/sqrt(a^2 + x^2)`
`sqrt(a^2 + x^2)dy/dx = my`
Squaring both sides we get,
`(a^2 + x^2)(dy/dx)^2 = m^2y^2`
Differentiating w.r.t ‘ЁЭСе’,
`2x(dy/dx)^2 + (a^2 + x^2)2dy/dx*(d^2y)/(dx^2) = 2m^2ydy/dx`
`\implies (a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If y = log (cos ex), then `"dy"/"dx"` is:
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.