Advertisements
Advertisements
Question
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Solution 1
`y = [x + sqrt(a^2 + x^2)]^m`
`dy/dx = (m[x + sqrt(a^2 + x^2)]^m)/(x + sqrt(a^2 + x^2))*[1 + (1*2x)/(2sqrt(a^2 + x^2))]`
= `my 1/sqrt(a^2 + x^2)`
`sqrt(a^2 + x^2)dy/dx = my`
`sqrt(a^2 + x^2)(d^2y)/(dx^2) + dy/dx * 1/2 * (2x)/sqrt(a^2 + x^2) = mdy/dx`
`(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - msqrt(a^2 + x^2)dy/dx = 0`
`(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Solution 2
`y = [x + sqrt(a^2 + x^2)]^m`
`dy/dx = (m[x + sqrt(a^2 + x^2)]^m)/(x + sqrt(a^2 + x^2)]*[1 + (1.2x)/(2sqrt(a^2 + x^2))]`
= `my 1/sqrt(a^2 + x^2)`
`sqrt(a^2 + x^2)dy/dx = my`
Squaring both sides we get,
`(a^2 + x^2)(dy/dx)^2 = m^2y^2`
Differentiating w.r.t ‘ЁЭСе’,
`2x(dy/dx)^2 + (a^2 + x^2)2dy/dx*(d^2y)/(dx^2) = 2m^2ydy/dx`
`\implies (a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
APPEARS IN
RELATED QUESTIONS
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Find `"dy"/"dx"`, if y = xx.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`